Computational complexity arising from degree correlations in networks
نویسندگان
چکیده
We apply a Bethe-Peierls approach to statistical-mechanics models defined on random networks of arbitrary degree distribution and arbitrary correlations between the degrees of neighboring vertices. Using the nondeterministic polynomial time hard optimization problem of finding minimal vertex covers on these graphs, we show that such correlations may lead to a qualitatively different solution structure as compared to uncorrelated networks. This results in a higher complexity of the network in a computational sense: Simple heuristic algorithms fail to find a minimal vertex cover in the highly correlated case, whereas uncorrelated networks seem to be simple from the point of view of combinatorial optimization.
منابع مشابه
Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...
متن کاملApproximate Model for Merging Markovian Arrival Processes
Traffic-based decomposition models encompass procedures required for modelling of the basic network operations of superposition, departure and splitting, arising due to the common sharing of the resources and routing decisions taking place in packetswitched networks. It is desirable to study such models for Markovian Arrival Processes (MAPs), as these processes are able to match correlations an...
متن کاملKnowledge Extraction from the Neural ‘Black Box’ in Ecological Monitoring
Phytoplankton biomass within the Saginaw Bay ecosystem (Lake Huron, Michigan, USA) was characterized as a function of select physical/chemical indicators. The complexity and variability of ecological systems typically make it difficult to model the influences of anthropogenic stressors and/or natural disturbances. Here, Artificial Neural Networks (ANNs) were developed to model chlorophyll a con...
متن کاملQuantifying long-range correlations in complex networks beyond nearest neighbors
We propose a fluctuation analysis to quantify spatial correlations in complex networks. The approach considers the sequences of degrees along shortest paths in the networks and quantifies the fluctuations in analogy to time series. In this work, the Barabasi-Albert (BA) model, the Cayley tree at the percolation transition, a fractal network model, and examples of real-world networks are studied...
متن کاملSampling from social networks’s graph based on topological properties and bee colony algorithm
In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 67 2 Pt 2 شماره
صفحات -
تاریخ انتشار 2003